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ABSTRACT

This paper presents a simulation framework and computational testbed for
studying multicellular pattern formation. The approach combines several de-
velopmental mechanisms (chemical, mechanical, genetic and electrical) known
to be important for biological pattern formation. The mechanisms are present
in an environment containing discrete cells which are capable of independent
movement (cell migration). Experience with the testbed indicates that the in-
teractions between the developmental mechanisms are important in determining
multicellular and developmental patterns.

Each simulated cell has an artificial genome whose expression is dependent only
upon its internal state and its local environment. The changes of each cell’s state
and of the environment are determined by piecewise continuous differential equa-
tions. The current two-dimensional simulation exhibits a variety of multicellular
behaviors, including cell migration, cell differentiation, gradient following, clus-
tering, lateral inhibition, and neurite outgrowth (see color plates).

We plan to perform simulated evolution on developmental models as part of
a long range goal to create artificial neural networks which solve problems in
perception and control [Fleischer]. The testbed is a step on the path towards
this goal.

1 Introduction

The testbed system described in this paper is part of a larger project to generate
a new class of artificial neural networks. We are studying the problem of gener-
ating artificial neural networks that share some properties of biological neural
networks, in particular:

0@Kurt Fleischer 1993. To appear in Artificial Life ITI, Addison- Wesley, 1993.
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¢ problem-specific geometric structure: Some biological neural circuits
solve a problem largely by assuming a particular geometric configuration.
For example, the owl auditory localization circuit [Carr & Konishi] uses
intercalated axons as delay lines to compute the difference between time
of arrival of auditory signals.

o asymmetric topological connectivity: Most artificial neural networks
have a prescribed regular connectivity. Biological systems exhibit a variety
of connection topologies.

¢ heterogeneous neural types: Most neural circuits involve multiple neu-
ral types which have different morphology and function.

These properties are evident in real neural networks, and are believed to be
closely related to the functions they compute. To capture these properties in an
artificial neural network, we have chosen to perform simulated evolution on a
developmental model.!

Why evolve a developmental model? Developmental models have two properties
which may make simulated evolution more fruitful:

¢ robustness — the process of development can compensate for deleterious
changes to the genome

¢ developmental gain — a small change in the genome can make a large
change in the organism (eg. add another layer, add another segment)

The simulation testbed presented in this paper was created to find a simple de-
velopmental model which can create neural networks with arbitrary topological
connectivity and a large degree of geometric complexity. The testbed must be
flexible so that we can explore different strategies for development and evolution.

We use the term modeling framework to refer to our modeling abstraction, which
we distinguish from the {festbed (our implementation of the framework)?. For
example, our framework contains the concept of an environment with diffusing
chemicals. The testbed currently implements this as a discretized grid in two
dimensions, and the cells’ sensors are implemented as smooth interpolations on
this grid. We may later decide to change the implementation, or extend it to
three dimensions, but our abstraction (the modeling framework) would remain
the same.

From developmental biology, we know that the gross structure of a multicellular
organism arises from the expression in each cell of preprogrammed genetic in-
formation in a particular environment. Each cell inherits state from its parent,
in the form of its genome as well as other cellular materials and structures (eg.
organelles; mRNA| etc). Although each cell only has access to local information,
the development process robustly creates successful organisms, even in the pres-
ence of fairly severe perturbations. What sort of local behaviors can account for
this?

1 A developmental model is a model that captures some aspect of the changes that occur
as an organism grows to achieve its mature shape and function.

2This distinction between abstraction and implementation is a useful tool in applied math-
ematics and other fields [Barzel].
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Previous mathematical models of morphogenesis have shown that chemical ef-
fects can account for some behaviors[Turing, Meinhardt], mechanical effects for
others[Odell et al], and cell-lineage control of the geometry of cell division can
account for yet other shapes[Lindenmayer & Prusinkiewicz, de Boer]. We com-
bine these factors in one modeling system, to explore how the interaction be-
tween these factors can determine developmental patterns.

Our modeling framework consists of discrete cells which are capable of indepen-
dent movement and are controlled by an artificial genome model. They move
about in a simulated environment comprised of chemical, mechanical, and elec-
trical elements. The individual cells are modeled as physical entities within this
environment, subject to mechanical collisions, adhesive forces, and drag. Each
cell’s activities are determined by its internal state, and the expression of its
genome within its local environment. The genome is a set of differential equa-
tions which depend on the cell’s current state and its local environment. The
changes in the environment are also governed by differential equations which im-
plement the mechanical effects and the diffusion of extracellular chemicals. The
current testbed is two-dimensional; extension to three dimensions is straightfor-
ward, although computationally more expensive.

Our first results show that the testbed is able to model several simple mul-
ticellular patterns. We show examples of following gradients, clustering, cell
differentiation, pattern formation, and network generation (see color plates).

1.1 Overview of the paper

Several of the elements of our model are based on previous work in develop-
mental biology. This work and other related work is briefly described in section
2.

Section 3 describes the modeling framework, and its relation to previous work.
The testbed implementation is presented in in section 4 (more details appear in
Appendix A). Sections 5 shows some experiments we have run with the testbed,
and section 6 discusses what we have learned from our experience with the
system.

2 Related Work

2.1 Previous Developmental Models

In this section we describe some previous models of development, each of which
focuses on a particular developmental mechanism (chemical, mechanical, ge-
netic, or electrical). Recently, some of these researchers have enhanced their
models to include elements of the other mechanisms, as we advocate.

Chemical Factors. Turing’s 1952 paper The Chemical Basis of Morphogenests
proposed a mathematical theory of cell-cell interaction via chemical substances
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(morphogens). He showed that these reaction-diffusion systems could exhibit sta-
ble patterns, and proposed this as a possible mechanism for pattern formation
in development. This has formed the basis of much work on developmental mod-
eling using reaction-diffusion equations, such as that by Meinhardt[Meinhardt],
the chemotaxis models of dyctyostelium slime molds [Lin & Segel], and creat-
ing patterns such as those of the zebra coat [Bard] and some butterfly wings
[Murray].

Mechanical Factors. In The Mechanical Basis of Morphogenesis (1981), Odell
et al. discuss how a mechanical model can account for gastrulation, neural tube
formation, and eversion behaviors such as that observed in Volvox [Odell et al].
In their system, the cell membrane is modeled as several springs with variable
spring constant and rest length. These parameters are modified based on inter-
actions between adjacent cells, and this gives rise to the various behaviors. Later
work in this area uses more detailed mechanical models, and incorporates some
chemical signalling to model cell intercalation [Oster] and other phenomena.

Genetic Factors: L-systems and Grammars. Grammar-based techniques
such as L-systems[Lindenmayer] are convenient for describing cell lineage
and genetic control of cell division. These systems use rewrite rules to se-
quentially modify strings which represent organisms, and are capable of cre-
ating realistic-looking models of biological structures. L-systems have been
particularly successful for modeling plants [Prusinkiewicz & Lindenmayer,
Lindenmayer & Prusinkiewicz], and have also been applied to modeling
cell layers [Prusinkiewicz & Lindenmayer, de Boer, Fracchia and Prusinkiewicz,
de Boer], topology of neural networks [Kitano],> and other systems.

Some grammar-based models incorporate environmental influences and cell-cell
interactions using context-sensitive languages[Lindenmayer,
Lindenmayer & Prusinkiewicz]. Other grammar-based models have been en-
hanced to include computation of physical forces for the modeling of cell layers
[de Boer, Fracchia and Prusinkiewicz, Prusinkiewicz & Lindenmayer]. Between
cycles of cell division, adjacent cells apply forces to each other, changing shape
until equilibrium is achieved. The cell walls are modeled as linear springs (sim-
ilar to Odell’s model[Odell et al]), and the cells expand and contract due to an
approximation of osmotic pressures.

This sort of hybrid system which incorporates both grammatical elements and
differential equation elements seems to be an effective way to make computa-
tionally feasible models which incorporate physical behaviors[Mjolsness et al,
Prusinkiewicz, Hammel & Mjolsness].

Electrical Activity. Electrical activity affects the development of neural struc-
ture in many ways. For example, it is thought that correlated firing between
neighboring axons can affect their destinations [Fraser & Perkel], and that
synapse formation can be strengthened in some cells when the firing of the
input and output cells are correlated [Hebb].

3 A more detailed comparison of our differential equation approach to evolving neural net-
works versus the grammar based approach of [Kitano] appears in [Fleischer].
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Fraser and Perkel proposed a developmental model of the neural map between
the retina and the tectum in the visual system of lower vertebrates. This model
incorporates several different mechanisms,; involving modulation of cell and neu-
rite adhesion, competition for space, and activity dependent processes (which
depend on the firing of neurons), and can reproduce a variety of observed ex-
perimental data.

2.2 Other Related Work

Several researchers have independently determined that it is now computation-
ally feasible to compute medium-scale developmental simulations for a variety
of applications. We mention here two systems which bear some similarity to our
model.

The Connectionist Model. Mjolsness et al. have noted the similarities be-
tween gene regulation and standard neural net dynamics [Mjolsness et al]. They
use differential equations to describe dynamics of gene interactions at a short
time scale, combined with a grammar-based model to describe cell state changes
at a longer time scale (eg. mitosis*, interphase, post-mitotic).

The connectionist model uses a fixed differential equation type to describe the
detailed dynamics. The differential equations are of the standard connectionist
form [Hopfield]:  7,(dvf/dt) = go(3>, T%v! +h*)—Asvf. The vf are the com-
ponents of the state vector for each cell 7, g, is a sigmoidal threshold function,
T are the components of a connection matrix, and h® are offsets.

This model is currently being successfully applied to the early developmental
genetics of Drosophila [Reinitz et al], by optimizing the parameters to match bi-
ological data (the optimized parameters are 7%°, h%, and parameters associated
with synthesis, decay, and diffusion rates).

The Cell Programming Language. The Cell Programming Language
[Agarwal] makes more simplifying assumptions (discrete time and space, and
direct interactions between cells), which enable it to compute simulations with
a few thousand cells. In the discretized spatial model, cells to exist only on grid
points. A single cell can cover several adjacent grid points, creating a nontrivial
shape. Each cell’s genome consists of a set of states for the phases of the cell
(pre-mitotic, post-mitotic, etc), and associated with each state is a sequential
list of instructions. Time is also discrete, and during each time step every cell
executes its instruction list. The state of each cell is directly available to neigh-
boring cells, so they can modify or react to the state of their neighbors. It has
been applied to modeling cellular sorting by differential adhesion, aggregation
in slime molds, and other phenomena.

4cell division



— Please do not distribute. To appear in Artificial Life III, 1993. — 6

3 The Modeling Framework

We propose a multiple mechanism model for cellular development, based on the
chemical, mechanical, genetic and electrical models discussed in the Previous
Work section (section 2.1). Several others have been moving in this direction as
well. The modeling of cell layers [Prusinkiewicz & Lindenmayer] incorporates a
grammar-based model for cell lineage and a mechanical model for cell-cell in-
teractions. The cell intercalation models of Oster et al. [Oster] combine detailed
mechanical models with simple chemical signaling models. The retino-tectal
model [Fraser & Perkel], the connectionist model [Mjolsness et al] and the Cell
Programming Language [Agarwal] are all models which use a combination of
mechanisms.

Modeling Framework Testbed

(abstraction) (current implementation)

Discrete cells (allows cell migration)

cell geometry 2d circles

cell substructures none

growth cones modeled as small cells

neurites path of growth cone and communication

link between cell and growth cone

Genetic/Cell Lineage

genetic control of cell operations parallel ODEs w/conditions

inherit state from parent cell yes

control over orientation of cell divisions | yes

asymmetric cell division not implemented yet
Extracellular environment

chemical 2d reaction-diffusion grid

mechanical mechanical barriers, viscous drag
Cell-cell interactions

mechanical collisions and adhesion between cells

chemical (membrane proteins) adhesion and contact recognition

electrical (gap junction, synapse) not implemented yet
Cell-environment interactions

chemical emit, absorb, sense values in grid

mechanical cell-env collisions and adhesion

Table 1: The modeling framework and its implementation.

Our modeling framework combines the multiple mechanisms within a single
simulated environment (see Table 1). The environment contains diffusing and
reacting chemicals, mechanical barriers, adhesive substances, etc. Cells move
about within this environment, interacting with each other and with the envi-
ronment.

Cell migration is an important aspect of the neural network development, and
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we explicitly model discrete cells which are free to move continuously within
the environment. This distinguishes our work from most of the previous work
in reaction-diffusion systems and grammar-based system which do not have this
capability. Other models which do allow cell migration often do not include
the other mechanisms (chemical, genetic) which are critical to developmental
pattern formation.

The inclusion of multiple mechanisms enables many forms of interaction between
cells. Interactions between cells can occur directly from one cell to another or
indirectly mediated by the environment between the cells. Examples of direct
interaction are collision (applying a force) and contact recognition (changing the
amount of a cell’s artificial membrane protein which is in a bound state). Indirect
cell interactions occur when a cell changes the state of the environment, which in
turn is sensed by another cell. For example, one cell can emit a chemical into the
environment which will then diffuse spatially. Another cell some distance away
can sense and respond to that emitted chemical, thus reacting to the actions of
the first cell in an indirect manner.

Genetic factors such as cell lineage are also important in forming de-
velopmental patterns. Some simple grammar-based systems which only
model cell lineage are capable of making biologically relevant patterns
[Prusinkiewicz & Lindenmayer]. The capabilities of these models motivate us
to include genetic mechanisms, although our representation is somewhat differ-
ent from that of L-systems. L-systems generally have pre-defined cell types and
determine the types of the children directly from the parent via a production
rule. Our cells inherit state from their parent, and then cells with different be-
havior or composition can be interpreted as different types. Our model is thus
at a slightly lower level of abstraction than the L-systems models, with cell type
derived rather than specified.

The connectionist model mentioned previously [Mjolsness et al] is a hybrid sys-
tem which uses grammar rules to model state changes within individual cells,
and differential equations to describe the continuous behavior within a state.
This system is similar to ours in many ways, the major differences being:

¢ they use a fixed type of differential equation, we have a more arbitrary
form (user-specified function, sections 4 and A.2.1)

¢ they have grammar rules for state changes, we use conditional terms on
our ODEs (sections 4 and A.2.1)

o goals: they are matching biological data, we are making artificial NNs
(although both systems are probably general enough to be applied in either
domain)

4 Testbed Implementation

In this section, we describe in broad terms the implementation of each feature
of the model sketched in Table 1. The current implementation is a subset of
the entire modeling framework. The electrical model is as yet incomplete, so
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we leave its description to a future paper. Appendix A contains a more de-
tailed description of the data structures, mathematical methods, and numerical
solutions.

Design goals for the testbed:

o faithfully implement the modeling framework

¢ show the ability to generate neural networks with asymmetric structure
and heterogeneous cell types

¢ the language used for genome should be amenable to simulated evolution
(as discussed in the introduction)

¢ scale: hundreds of cells

¢ flexible and extensible

We model discrete cells as containing two classes of proteins: those in the cyto-
plasm of the cell, and those in the membrane. These proteins form the state of
our cells. Each protein is represented by a floating point state variable (state[d])
describing the amount of that protein currently in the cell (or membrane). Con-
version between amounts and concentration is done using cell volume.

coll | Global
Cell B| Environment
Cell A local environment . .
influences cell Diffusion
cell state eqgns .
Collision
Adhesion
cell state N
— Cell Recognition
L cell influences Eqns of Motion

cell behavior fns

local environment Drag

Diagram 1: Each cell’s state is a modified by the cell state equations (the
genome), which have access to the cell’s local environment. The local environ-
ment information is computed from the processes in the global environment. The
cell’s state determines the cell’s behavior via the cell behavior functions. The
behavior can then affect the global environment (eg. by releasing a diffusable
chemical).

The cells change state continuously via an artificial genome (the cell state equa-
tions, see Diagram 1 and section A.2.1), which encodes the change of amount
of protein over time (dstate[t]/dt). This derivative depends on the current state
of the cell and on information available in the cell’s local environment (locally
measured values of diffusable chemicals, amount of contact with neighbors, etc).
To allow the artificial genes to regulate each other (turn each other on and off),
we include a conditional term to each differential equation. For a cell ¢, a single
artificial gene for a state variable ¢ has the form:

dstate[1]

if Condition.(state., env.) then o

= Consequent . (state,, env,)
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Several artificial genes may code for the same artificial protein, and their con-
tribution is summed compute the total change in state. We implement the con-
ditions as continuous functions from which vary from zero to one in a sigmoidal
fashion, which are multiplied times the consequent to give the actual contribu-
tion. Using a continuous function avoid signalling a discontinuity every time a
condition fires.

dstate,[1]

7 = Z(Continuous(:onditionf(statec, envc))((:onsequentf(statec, enve))

S

The state of a cell determines its behavior via the cell behavior functions (section
A.2.2) In real biochemical systems, a protein or group of proteins has a specific
function in the cell, which is a consequence of the molecular structure of the
proteins involved. We use a mathematical expression (the cell behavior function)
to describe how a protein or group of proteins acts to perform some function,
eg: produce a locomotor force, release a diffusable chemical, adhere to another
molecule, etc.

Cells also exhibit discontinuous behaviors (events), such as cell division, emitting
a growth cone, and dying. We determine the timing of each event with a cell
behavior function; when the function crosses zero, the specified event occurs
(cell divides, emits a growth cone, or dies).

The continuous and discontinuous behaviors of the cells form a system of piece-
wise continuous ordinary differential equations [Barzel]. These are solved sim-
ilarly to ordinary differential equations (ODEs), except that when an event
occurs (as signalled by an event function crossing zero), the solver is briefly
halted and structures are created or destroyed (eg. during cell division or cell
death). Thus the solver must also do root finding on the event functions while
it is integrating the ODEs forward in time.®

The testbed supports a broad range of experiments, in which a simulated organ-
ism is allowed to undergo development according to its artificial genome and the
given environemental conditions. An experiment is described in a file containing
the cell state equations (artificial genome), cell behavior functions, parameter
settings, boundary conditions, and initial state (an example file appears in Ap-
pendix B). Thus the user can change both the state equations (genome) and
the behavior equations. In practice, we tend to change only the genome and use
the same behavior functions between experiments.

5 Results

Snapshots from the animations generated by the testbed are shown in the Fig-
ures 1-6 (color plates). Two of them are also included in black and white with
the text, for convenience (Figures 5d and 6d). These simulations show the abil-
ity of our testbed to exhibit some basic multicellular behaviors. The cells are

5The piecewise ODEs manage state changes, performing a similar function to the grammar
rules in the connectionist model [Mjolsness et al].
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represented as circles, and the diffusing chemicals are rendered as graded colors.
Neurites are shown as white lines (in Figure 6).

The simulations were computed on Hewlett Packard 9000 series 800 and 700,
IBM RS6000, and DEC Alpha computers. The running times range from a

several seconds to a few hours.

Figure 1: Neurite path finding. In this experiment, a growth cone from a
cell on the left climbs the gradient of the red chemical, pushing through the
barriers in its path until it reaches the far cell (which is emitting the chemical).
Note the robustness exhibited here: the connection is made despite the presence
of barriers. If the barriers were removed or differently located, the connection is
still likely to be made.

Figure 2: Cell differentiation. The initial cell divides under the control of
a cytoplasmically inherited factor (a protein which the cell inherits from its
parent). When this is diluted beyond a threshold, the cells stop dividing, and
begin to emit diffusable chemicals. One of the chemicals is a fast-diffusing in-
hibitory factor, (green) and the other is slow-diffusing and excitatory (red). The
combination of lateral inhibition and local positive feedback gives rise to pat-
terns of differentiated cells, as in Meinhardt’s work [Meinhardt]. Those turned
‘on’ are emitting both red and green. The other cells’ activity is suppressed by
the inhibitory green chemical. Initial conditions and environmental differences
account for which cells are selected, creating a heterogeneous population.

Figure 3a-b: Cyclic Behavior. Size regulation (creating and maintaining
the proper number and types of cells) is an important function in multicellular
organisms. In every experiment we conduct, we must deal with size regulation,
avoiding explosive non-terminating growth (which simply fills our simulated
petri dish).

We include this example to emphasize that it is not trivial to predict what a
given artificial genome will do, nor is it easy to concoct by hand a genome to
create a particular pattern.

In Figures 3a and 3b, we see an attempt to regulate size using diffusable chem-
icals. Instead of regulating the size, this experiment unexpectedly resulted in
cyclic behavior. There were initially two cell types: one emits and seeks red, the
other emits and seeks green. Growth and splitting for each type limited by the
presence its respective chemical. The amount of chemical emission is regulated
by the presence of the chemical. This specification forms clusters,h however, they
are not stable. Once the clusters form, the cells in the center of the cluster begin
to reduce their emission of the chemical, which causes a local depression. The
gradient then lead the cells out from the center, forming a ring. The ring pattern
is not stable either, and the cells tend to cluster together again, cyclically.

Figure 4a-d: Chains of Cells. This experiment shows how the ratio of forces
due to two different mechanisms can be effective in creating a pattern. The two
opposing forces are an attractive force due to cell adhesion, and a repulsive force
due to a diffusable chemical. The cells are held together by the adhesive force,
but are attempt to move away from each other due to the repulsive chemical.
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This interaction leads to a pattern of chains of cells, or very small clumps.

The cells divide when the concentration of the chemical is low, so the ones at
the end of a chain tend to divide more frequently. This also serves to regulate
the size of the chains. (The interpreted code for this experiment appears in
Appendix B).

Figure 5d. Figure 6d.

Figure 5a-d: Skeleton. This sequence begins with a single cell which divides
for several generations. These first cells emit a diffusing chemical (shown as
yellow in the color figure), and move about until they sense at a certain level of
the chemical. This forms a pattern of roughly equally spaced cells. When this
pattern is stable, some of the cells change state and begin to exhibit the chaining
behavior (as in Figure 4). The second wave cells avoid large concentrations of
the (yellow) diffusing chemical, but are attracted to it if the concentration is
too small. Thus they intercalate between the original cells, but do not move to
far from the cluster.

Figure 6a-d: Network. Two cells of different types give rise to a small network
in this simulation run. One cell divides a few times to create a small cluster of
green emitting cells. At a later time (determined by the dilution of an inherited
factor), these cells emit growth cones® which seek the red chemical. Meanwhile,
the other cells have been dividing and emitting the red chemical, and are waiting
to be contacted by the growing neurites.

When a growth cone initially contacts a red-emitting cell, it adheres via a certain
surface factor (an artificial membrane protein). Upon recognizing the contact,
both the cell and the growth cone undergo a state change. They both begin
to express a different adhesive surface factor, and stop expressing the first. In
addition, the cell stops emitting red, and the growth cone stops moving. Thus
the cell will no longer attract growth cones (since it has stopped emitting red),
and later arriving growth cones will no longer adhere to it (since it has stopped
expressing the first surface factor).

Growth cones which have not made contact continue to search for red-emitting

6A growth cone is a structure at the tip of a growing neurite, which is “the driving force
behind neurite extension.”[Purves et al].
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cells. Eventually, the growth cones which fail to find a target will die, as will their
neurites. The process of excess neurites dying off can be seen in the difference
between the number of white neurites in figures 6¢ and 6d. This “pruning” of
excess neurites is a phenomenon observed in biological networks[Purves et al,
Brown et al].

6 Discussion

6.1 What have we learned from these experiments?

o Size regulation (creating and maintaining the size and shape of a multi-
cellular organism) is critical, and non-trivial.

¢ Using the combination of multiple mechanisms to specify a pattern can
be more robust than using a single mechanism.

o Specifying cell lineage (via cytoplasmically inherited factors) is a useful
way of describing a developmental pattern (this is the mechanism used by
L-systems, section 2.1).

o It is difficult to design an artificial genome which develops into a particular
pattern, or conversely, to predict the pattern that a particular artificial
genome will create.

o Developmental models are adaptive (robust). They tend to generate sim-
ilar patterns under perturbations of environment or initial conditions.

Size Regulation. Size regulation is a difficult problem for multicellular organ-
isms. We separate this into two related problems: limiting growth, and clustering
(keeping the cells together). Each of these may be solved using chemical, me-
chanical or genetic operations. For limiting growth, we tried two methods:
¢ using a threshold on the concentration of a diffusable chemical to turn cell
division on and off, and
¢ using cytoplasmically inherited factors. Cells keep subdividing until the
supply of an irreplaceable chemical is exhausted. Since the chemical is not
regenerated, each cell division reduces the total amount per cell, and as
the cells grow in size, the concentration diminishes.
For clustering, we also tried two methods:
¢ cells move up the concentration gradient of a diffusable chemical, and
o using cell adhesion to keep cells together.
The most robust size regulation behavior was produced using a combination of
approaches (as in Figures 4, 5 and 6).

Relation to L-systems Control via cytoplasmically inherited factors is
an effective way to regulate a developmental process. The combination
of asymmetric cell division and inherited factors can emulate L-systems
([Prusinkiewicz & Lindenmayer], section 2.1). Each cell division is like a pro-
duction rule (parent — child, childy), with the children differing as specified
by the asymmetric cell division. As discussed in section 2, this approach can be
seen as a model at a lower level of abstraction than that of L-systems. Asym-
metric cell division was not used in the simulations shown in this paper, however
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we did use inherited factors to control cell division and state changes.

Hard to make the genomes by hand As we mentioned in the Results section
(5), it is difficult to construct by hand an artificial genome which will give rise to
a particular pattern. This is not surprising, since we are writing a specification
in a very indirect language, and the resulting simulated organism will be affected
by many factors during its development. However, it is not our intention that
the system be easily programmed by humans. A more pertinent issue is whether
the artificial genome will be appropriate for simulated evolution.

Is this genome representation appropriate for simulated evolution?
The experiments reveal that developmental models adapt well to changes in
environment and initial conditions. It seems likely that that they will also have
robustness with respect to genomic variation (as mentioned in the introduction).
Hence our initial experiments lead us to believe that our artifical genome is well
suited to simulated evolution. We have started performing simulated evolution
on these developmental models, and will report those results when they are
complete (the preliminary results seem promising).

6.2 Useful Techniques for Developmental Simulation

During the construction of the testbed, we focused on getting qualitatively bio-
logical behavior while aiming for computational efficiency. The following tech-
niques were effective in achieving this balance:
o Artificial Genome: (sections 4 and A.2.1)
¢ use condition to allow regulation of genes and groups of genes
o compute condition as a continuous function (avoid a discontinuity at
the firing of every condition)
¢ sum the contribution of multiple artificial genes
© use one sensor with a time-varying location instead of many fixed sensors
(section A.3.1)
o use simplest stable solver (adaptive euler solver, section A.6)
o use viscous dynamics (F' = kv) for cell motion (section A.2.3)
© use penalty method for sloppy collisions (section A.3.2)

Noise can play an important role in dynamical systems, knocking a system off
of an unstable point or popping it out of a local minimum. It also can be used as
part of a stochastic estimation process. For instance, some bacteria move up a
nutrient gradient by the strategy of moving randomly in various directions, but
with a smaller likelihood of changing direction if there seems to more nutrient.
We incorporate noise by adding it in at the cell’s sensors (user can specify the
amount of noise).
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7 Conclusion

We have presented a developmental model which captures sufficient biological
detail to produce patterns with asymmetric structure and heterogeneous cell
types. In fact, asymmetry is the rule rather than the exception. Yet in figure
5, we see a fairly regular global pattern which can arise despite local disorder.
Heterogeneity is also evident in the multiple cell types.

The modeling framework is based on several mechanisms known to be im-
portant in biological development (chemical[Turing], mechanical[Odell et al].
electrical[Fraser & Perkel], and genetic/cell lineage[Lindenmayer]). The inter-
action between mechanisms can lead to heterogeneous patterns; also, patterns
can be redundantly specificied via different mechanisms.

This is work in progress towards a long range goal of performing simulated
evolution on developmental models. The experiments performed to date suggest
that developmental models can be robust to changes in the environment or
initial conditions. Despite perturbations, they tend to form similar patterns.
This property is likely to be important for simulated evolution, where adaptation
to small changes in the genome may help the organism survive mutations which
lead to new structures.
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A Appendix A: Detailed Implementation

We begin with definitions of variables and objects, then proceed with an expla-
nation of the equations which control the behaviors of the cells and environment.
The last two subsections describe the implementation of growth cones and neu-
rites, and the numerical solution methods.

Definitions

Cell Equations (State Equations, Behavior Functions, Equations of Mo-
tion)

Environment Equations (Diffusion, Collision)

Model of Membrane Proteins and Cell Adhesion

Neurites and Growth Cones

Numerical Computation

S O

S 0O O

A note on the protein model

The model was initially implemented as described in section 4. Since the cell
state variables encoded protein amounts, they were constrained to be greater
than or equal to zero. However, we found that our cell state equations and cell
behavior functions often used a difference of the state values to create a signed
value (state[i] — state[j]). This suggested a computational speedup by doing a
change of variables, and allowing our state variables to represent the difference
of a pair of proteins. This removes the constraint that the state variables be
non-negative, and reduces the number of variables by half.

A.1 Definitions

cell A cell is modeled as a geometric shape (currently a circle, with optional
neurites) with a given response to applied forces, as well as an array of
cell state variables

continuous cell behaviors Cells exhibit several continuous behaviors, deter-
mined by the cell behavior functions (section A.2.2):

o attempt to move in some direction (may be limited by collisions,
adhesion, or drag)

o attempt to grow in size

emit or absorb chemicals from the environment

o change amount of particular proteins in the membrane (eg. cell ad-
hesion proteins, which mediate how much this cell will adhere to
another cell)

<&

discontinuous cell behaviors (events) The cell provides functions which
determine the timing of the following events. An event is a discontinu-
ity in the solution, which stops the solver and may create or destroy data
structures. The timing of events is determined by cell behavior functions
which are described in section A.2.2 below.
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o split (cell division)
o die
© emit neurite with growth cone

cell state variables (state.[]) An array of variables which loosely represent
the amounts of proteins within the cell (or differences, as noted above).
The values of these variables affect the cell’s movements, the timing of
events, and the cell’s interaction with the environment.

environment All of the simulated cells interact within a single global envi-
ronment. The environment contains diffusing, reacting chemicals, as well
as physical barriers. Within the simulation, cells access information about
their environment locally through an array of local environment variables.

local environment variables (env.[]) An array of variables which represent
the local environment of a cell. The values available to the cell as a function
of time, and they depend on the extracellular environment. Since each cell
is in a different location, in general the local environments of two cells will
differ. These variations can then lead to different behavior for the cells,
even though their genomes may be identical.

Local Environment Variables

The local environment of a cell can be accessed via the array of local environment
variables. These include:

o amount and gradient of diffusable chemicals at a local sensor (with noise)

o amount of cell membrane proteins in a bound state (for detecting contact
with other cells — see section below on Model of Membrane Proteins and
Cell Adhesion).

o cell size

Cell size is included as an environmental variable since the equations of motion
and growth of cells are actually computed in a global process, and then propa-
gated back to the cells. A cell does not have access to its absolute location, but
it does know its size.

In the simulations shown, the local environment variables were defined to contain
the values and gradients of the chemicals around each cell. For each diffusable
or non-diffusable chemical in the environment (¢ € 0,...,m), there are three
variables: one for the value (chem;), and two for the components of the 2d
gradient (Ochem;/0x, Dchem;/0y).

For each membrane protein (j € 0,...,n), there is a value (mem;) which ap-
proximates the amount of that protein which is bound to a matching protein on
an adjacent cell (in our model, the cells must be in contact for their membrane
proteins to bind — see section A.4 below for details).
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At present the local environment array looks like:

Ochemgy Jchemg

env.[] = (size, chemy, 5 C 5 ,
L Y
b Ochemy, Ochemy b dchem,,_1 Ochem,,_1
chemy, 3 )y CREMp 1, 3
! Oz Jy nol oz Jdy
memg, memy, -, MeMy_1)

A.2 Cell Equations

The cell state variables indirectly control a cell’s behavior within its environ-
ment. This is accomplished via three categories of functions, the cell state equa-
tions (genome), cell behavior functions (protein structure to function model),
and the cell equations of motion (see Diagram 1).

cell state equations (the genome): The state equations modify the cell’s
internal state variables based on the local environment and the cell’s cur-
rent state.

cell behavior functions (protein structure to function model):
The cell’s current state determines what it is trying to do: the forces it is
applying, events such as cell division, etc. The behavior functions compute
all of the cell’s forces and events from the state variables.

cell equations of motion: given the cell’s behavior functions which describe
what the cell is trying to do, these equations will compute the end results.
For example, the cell may be applying forces to move right, but the colli-
sion forces may counteract that movement, producing a net movement to
the left or right.

Cells are only able to access local information such as the local concentration
of chemicals (see Local Environment Variables section A.1). They cannot
directly access their absolute position and orientation in the world. Nor can they
directly change their position, but do so only by applying forces which may be
counteracted by other forces (eg. collision with a wall).

A.2.1 Cell State Equations (the genome)

The cell state equations are the model of the cell’s genome (see section 4).
These equations encode how the cell changes state based on its local environ-
ment and its current state. The state equations implement a crude model of
protein sythesis. In biological cells, a gene encodes a protein. In our model, a
conditional differential equation determines the change of a variable related to
protein amount. (Examples of cell state equations appear in Appendix B).

This artificial genome was designed to be amenable to simulated evolution. We
focus on the following properties:
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o allow regulation of genes by other gene products (to switch on and off
single equations)

o allow groups of genes to be regulated together (to switch on and off groups
of equations)

o if there are multiple genes for the same protein, just make more of it

The conditional element models the regulation of a gene or group of genes,
enabling us to switch on or off groups of equations based on the state of the cell
or its local environment.

It is possible to have multiple contributions to the same state variable (multiple
genes for the same protein). The differential equation for state variable state[]
is formed from the contribution of all of the consequents pertaining to that state
variable. The condition is implemented as a continuous function (rather than a
zero to one step), which is multiplied times the consequent. This is both more
“biological” (rates of protein production turn on and off with some probability),
and more efficient (no need to do root finding for the exact time of the condition
changing).

dstate[1]

7 = Z(Continuous(:onditionf(statec, envc))((:onsequentf(statec, env))

S

A.2.2 Cell Behavior Functions

The behavior functions compute the cells’ attempted behaviors based on their
current state. Both continuous and discontinuous behaviors are handled; con-
tinuous behaviors are simply continuous functions of the state variables (eg.
MotiveForce, GrowthForce, Spew), and discontinuous behaviors are events trig-
gered by the zero-crossing of a behavior function (eg. TimeToSplit, TimeToDie).

This example illustrates the behavior functions used to compute the simula-
tions shown in section 5. These may be changed to arbitrary C mathematical
expressions which depend on the state and local environment.

MotiveForce (state.,env.) = (state.[0], state,[1])
GrowthForce (state.,env.) = state,[2]
TimeToSplit,(state,,env,) = min(thresh(rg, env(radius]),

thresh (split, state.[split])) — 0.5)

The definition of TimeToSplit() is a continuous version of the condition
((radius > rg) & (state.[split] > sg)), le. a cell splits when it is large enough
(bigger than rg) and has accumulated enough of the state.[split] protein (more
than sg). The other event functions TimeToDie() and TimeToEmitNeurite() are
defined similarly.

For each chemical @ € 0,1,..., nchems, this function defines the amount of a
diffusable chemical a being emitted into or absorbed from the environment by
cell ¢. In the simulations shown, the rate at which chemical a is emitted by the
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cell is determined a single state variable state.[i,], where i, is an index into the
state array.

Spew, .(state.,env.) = state,[iy]

As mentioned before, this an example of the equations used in the simulations
shown; other functions of the state and environment variables can easily be
defined. For instance, a useful alternative to defining the components of the mo-
tive force directly via state variables is to use state variables for the magnitude
and direction of motion, then transform them to obtain the zy components
of the force: MotiveForce,(state.,env,) = (state.[0] - cos(state.[1]), state,[0] -
sin(state.[1])).

A.2.3 Equations of Motion for the Cells

The motion and growth of the cells is determined by the forces they generate,
and the forces applied from collisions and other extracellular effects. In the
low Reynolds number domain of small objects in viscous fluids, we determine
the velocity v from balancing the drag force F' = kv with the applied forces
(k = kdrag x area(c)). The CollisionForce and AdhesionForce are computed in
the global environment, and are described in detail below (under Environment
Equations).

Z = CollisionForce, + AdhesionForce,. + MotiveForce. — kv

forces

= 0

Unlike the drag force, the collision forces do not depend on velocity (section
A.3.2). Adding a dependence on velocity is straightforward, and leads to a set
of simultaneous equations of motion which can be solved to find cell velocities.

A.3 Environment Equations
A.3.1 Diffusion

The diffusion of each chemical is governed by a partial differential equation for

fa, the amount of chemical a. The R,(A) function computes reactions occuring

naturally between chemical a and all other chemicals A as they mix in the

extracellular matrix. For each chemical a, at a particular location:

Ofal: L .

%,y) = — 2 fu(x,y) — dissipation, + R4(A) + SourcesAndSinks,(z, y, 1)
Each cell can emit or absorb chemicals locally, and thus contributes to

SourcesAndSinks(z, y,t). We have experimented with two models for the location

of the sources/sinks on the cells:

o several locations along the cell perimeter
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¢ a single location at the center of the cell

We primarily use the single location since it gives qualitatively similar results
and is computationally more efficient. For this case, the function for chemical a
can be specified as:

SourcesAndSinks,(z,y,t) = E 6(x — ¢z, y — cy) Spew, ,(state., env.)

cecells
where the location of cell ¢ is (¢g, ¢y), and 6(z, y) is the Dirac delta function (a
spike at z =0,y = 0).

The function fq(x,y,1) is discretized on an n x n grid in two dimensions to give
n? ODES. The notation f indicates the value of the discretized variable at
node (4,7) in the 2d grid.

dfy
dt

= (I ST Y T —afy
—dissipation, + Ra(fa, fi, fe, - . -) + SourcesAndSinks (¢)

The discrete version of the SourcesAndSinks() function is computed by partition-
ing the components of a cell’s emission/absorption between the adjacent grid
points using bilinear extrapolation.

In addition to modifying the information in the diffusion grid (via the
SourcesAndSinks() function), a cell can sense the values and gradient of a chemi-
cal locally via sensors. We have implemented several sensor strategies to date:

o multiple sensors on the cell’s periphery (sensing value only, gradient is
computed by differences),

o a single sensor at the cell’s center (sensing value and gradient directly),
and

© a single sensor at a random location on the cell (sensing value and gradi-
ent).

We have found the randomly moving sensor to be the most effective of the
three. The randomly moving sensor computes a approximation to the value at
the center of the cell. It is more efficient than using multiple sensors, and it
avoids some problems which occur when using a stationary sensor and source
which are both located at the center of the cell.

An alternative strategy for implementing the sensors is to represent the amount
of sensor proteins in the cell membrane. The strength of the sensor signal then
depends on this amount, similar to the contact recognition computation dis-
cussed below in section A.4.

The diffusion equation for moving point sources/sinks can be solved in closed
form using an integral expression. It is possible that this approach could speed
up the computation, although the dependence of the integral on the history of
cell movement may make this undesirable. Also, using a closed form solution
would put more restrictions on the extracellular reaction function R().
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A.3.2 Collision

Collisions are computed using a penalty term [Platt], which is introduced into
the equations of motion for each cell as a force. For every colliding pair of
objects, the collision manager computes equal and opposite forces. Note that
the objects for the collision computation are not restricted to being cells. For
instance, collisions are also computed with the boundaries of the environment,
and other objects can be introduced as well (to model bone, fibers or other
substances in the environment).

In the case of colliding circles, the forces are very simple, but more complex
collisions are possible within our framework. For every pair of objects b, ¢, we
denote the function computing their maximum overlap as d(b,¢). p is a unit
vector in the direction of the maximum overlap. Then we have:

CollisionForce, = Z k (d(b,c) — offset)” p

beobjects

This method of collision computation is somewhat inaccurate and requires
choosing parameters k£, n, and offset arbitrarily. However, accurate collisions
are not critical to our application, and the cells we are modeling are not rigid
objects so some amount of overlap is acceptable. In practice, object interpen-
etration has only occasionally been troublesome, and the penalty method has
been computationally efficent when combined with our solution methods (sec-
tion A.6).

A.4 Model of Membrane Proteins and Cell Adhesion

Real cells have many proteins in their membranes which perform a variety of
functions. We propose a simple model of membrane proteins (which we refer to
as surface factors). Our model captures a few of the major functions:

o cell recognition (cells recognize that they are in contact)
o cell adhesion (cells physically bind together)

In both cases, our model contains both homophilic (like binds to like) and
heterophilic (a complementary pair binds together) surface factors.

A single state variable z; directly controls the amount a given surface factor
in the cell’s membrane. The surface factor which is bound to its complement
on an adjacent cell is reported in the mem; variables in the local environment
array. This suffices for cell contact recognition; cells can determine that they
are in contact with another cell that expresses a certain surface factor. For cell
adhesion, there is a force computed which depends on the size of the region of
contact, and the amounts of surface factors available on the contacting cells.

Note that this model does not allow for asymmetric expression or recognition
along the membrane. Cells cannot express a surface factor on just one side, not
can they tell which side has been contacted. This limitation may be important,
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and we are considering various models to enable specifying a spatial distribution
of surface factors without adding too much computational burden.

All of the functions of the membrane protein model depend on the amount of a
surface factor which is bound. This is computed from the contact area between
two cells, and the amount of the complementary factors in their membranes.
Let (Conc(a) return the concentration of @ on cell ¢). For a particular surface
factor a with complement a’, we have:

AmountBound.(a) = Z ContactArea(c, b) x Conc.(a) x Concy(a’) X prind,
becells

where pping is a multiplicative constant that roughly corresponds to the prob-
ability that two proteins @ and @’ will bind. ContactArea(c,b) estimates the
contact area between two cells as the chord length of their overlap. The recogni-
tion factors report AmountBound in the appropriate local environment variable
(the mem; mentioned in section A.1).

The adhesion force on a cell is the sum of the forces from all the adhesive surface
factors on all of the cells in contact:

AdhesionForce, = Z AmtBound,(j) * stickness;

j€adhesion factors

Biological cells also use membrane proteins as sensors to detect diffusable chem-
icals in the environment, and as channels for emitting diffusable chemicals. We
could model these effects similarly, but instead we have chosen to directly mea-
sure/change the chemicals in the local environment (discussed above in the
Diffusion section, A.3.1). This is done for efficiency.

A.5 Neurites and Growth Cones

We model growth cones as small cells which are connected to the parent cell
by a neurite. They have the same capabilities as cells, except that they die if
the parent cell dies, and they cannot emit growth cones of their own. Branching
neurites can be implemented as splitting of growth cones, analogous to cell
division. Growth cones and cells communicate via a set of state variables which
are held in the neurite. The growth cones and cells can modify and sense the
levels of these state variables in the neurite.

Although the growth cone computes collisions with the cells, collisions between
neurites and other objects are not computed. The geometry of the neurites
is simply a record of the path of the growth cone (Figure 6). In biological
systems, adhesion and mechanical interactions between neurites are known to be
factors in neural development. However, implementing the neurite-cell collisions
in two dimensions seems too restrictive on the cells’ movements. Therefore we
have opted for computational expedience and do not compute collisions between
neurites and other objects.
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A.6 Numerical Computation

We have combined the equations arising from chemical, mechanical, and elec-
trical sources into one large system of ordinary differential equations. Since
discontinuous events occur in the ODE system (representing cell division, colli-
sions between cells, etc), the numerical implementation is based on a piecewise-
continuous ordinary differential equation (PODE) solver [Barzel]. The PODE
solver allows the addition/deletion of variables at discontinuities, which occur
when cells split or die during the course of a simulation run.

There is a tradeoff regarding the choice of numerical method for solving the sim-
ulation equations and the solution’s computation time, stability, and accuracy.
The solver needs to work well in the context of the three dominating effects en-
coded in the differential equations: diffusion of chemicals on a grid, forces which
cause the cells to migrate, and forces induced by cell-to-cell contacts.

We have chosen one of the simplest numerical solvers that produces stable and
qualitatively accurate solutions. After experimenting with several ODE solution
techniques (variable-order variable-step Adams method, Runge-Kutta, ...) we
have settled on a type of adaptive Euler solver which greedily increases its step-
size, but is limited by a function which looks for signs of instability and other
undesirable behaviors. We were able to eliminate the more advanced but com-
putationally more expensive ODE modules, without compromising qualitative
accuracy.

The solver rejects differential equation steps that do not meet the following
criteria:

o per ODE step, cells cannot move more than a specified distance (typically
5% of a cell diameter). This prevents tunneling of cells through one an-
other, and prevents gross instabilities when there are many cells in close
contact with one another, with very large forces acting on them.

o diffusion concentrations cannot change by more than a specified amount
per ODE step on the grid elements. Thus, we avoid wasting computation
time at near-zero concentrations. (This can cause some oscillation of values
at low concentrations in the diffusion grid.)

If an ODE step is rejected, the solver tries again with a smaller step-size.

With these restrictions, the simple Euler solver is sufficiently accurate and effi-
cient, particularly when dissipation effects (such as from chemical diffusion and
from viscous drag on the cells) dominate the equations. The main advantage
of this approach is that gross instabilities are eliminated despite using a very
simple ODE solution method. The solutions produced by the simpler method
approaches the numerical solution from the more advanced solvers as the step
size is reduced.

Another reason for using the adaptive Euler solver is that it copes better with
discontinuities such as random noise added to the system. More sophisticated
solvers do not handle this as well.
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B Appendix B: Example Experiment File

This is an example of the interpreted file used to generate the simulation shown
in Figure 4.

nchems = 1; /#* How many diffusable chemicals in environment */
user_state = 1; /* Number of state variables user wants */

/* diffusion and dissipation coefficients for all chemicals */
diffusion[0] = 4.0;
dissipation[0] = 1.0;

setcolor(0, 0.8, 0.2, 0.0); /* color of diffusing chem 0 */

/* The values fx, fy, fsize, etc are integers
which are used as array indices into the state array

Array indices for the state array (z[])

System defined (defined for every experiment):
fx, fy, fsize -- forces omn x, y, radius
split, die, emitgc —-- event indices
homophilic -— homophilic cell surface chemical,
sticks to same chemical on adjacent cells
spew -— rate at which to emit chemical 0O

User defined (just for this experiment):
rundown -- this indexes a state variable
which decreases over time, diluted by cell division
as well as consumed inside the cell. Controls how
many generations of cell division occur.

Array indices for local environment array (env[])

rvl, rdx, rdy -- chemical O value and gradient
radius -- size of cell
stuck —— how much of the homophilic cell adhesion molecule

¥ O K K K K K K K K K K K K K K K K X X K ¥

on our surface is bound.
*/

int rundown = nstate+0;

/* addstmt(condition, index, consequent);

* adds a ’gene’ to the artificial genome which does:
* if (condition(state, env))

* then dstate[index]/dt += consequent(state, env)

*/

beginprogram();

addstmt (" (TRUE)", fx, "-statel[fx]");
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addstmt (" (TRUE)", fy, "-statel[fyl");
addstmt (" (TRUE)", fsize, "-state[fsizel"); /* Grow =*/
addstmt (" (TRUE)", split, "-statelsplit]"); /* Split */

/* just dilute down to O as we grow and divide */
addstmt (" (1)", rundown, "-1");

/* initially, split if we aren’t stuck to too many neighbors */

/% (until rundown runs down) */

addstmt (" ((state[rundown] > 30) && (env[stuck] < 0.6)) ||
(env[radius] > 1.0)", split, 4.3);

addstmt (" (state[rundown] > 30) && (env[stuck] < 0.6)", fsize, 0.1);

/* later, split if there is not much of chemical 0 */
addstmt (" (env[rvl] < 0.2) || (env[radius] > 1.0)", split, 4.3);
addstmt (" (env[rvl] < 0.2)", fsize, 0.1);

/* Spew until we see enough of chem 0 in the local environment */
addstmt (" (1)", "spew", "5*(0.5 - env[rvl])");

/* if we are not stuck to enough neighbors, move towards chem O,
* else if too many, move away */

addstmt (" (env[stuck] < 0.2)", fx, "7*env[rdx]");
addstmt (" (env[stuck] < 0.2)", fy, "7*env[rdyl");
addstmt (" (env[stuck] > 0.8)", fx, "-T*env[rdx]");
addstmt (" (env[stuck] > 0.6)", fy, "-7*env[rdyl");

/* set the concentration of adhesion molecule in the membrane */
addstmt ("1", "homophilic", "0.4-state[homophilic]");

addcell("FirstCell", 5.0, -0.48); /* initial cell name and pos */
/* set initial value for state[rundown] */

/* changing values here makes different numbers of cells */
initcell("FirstCell", rundown, 1200);
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