
A multi-algorithm, multi-timescale method for cell simulation

Kouichi Takahashi ∗ (shafi@e-cell.org)
Kazunari Kaizu (t00220kk@sfc.keio.ac.jp)

Bin Hu (hubin@sfc.keio.ac.jp)
Masaru Tomita (mt@sfc.keio.ac.jp)

Institute for Advanced Biosciences, Keio University, Fujisawa, Kanagawa, 252-8520, Japan.

∗To whom correspondence should be addressed.

Abstract

Motivation Many important problems in cell biology re-
quire the dense nonlinear interactions between func-
tional modules to be considered. The importance of
computer simulation in understanding cellular pro-
cesses is now widely accepted, and a variety of sim-
ulation algorithms useful for studying certain sub-
systems have been designed. Many of these are al-
ready widely used, and a large number of models
constructed on these existing formalisms are avail-
able. A significant computational challenge is how
we can integrate such sub-cellular models running
on different types of algorithms to construct higher
order models.

Results A modular, object-oriented simulation meta-
algorithm based on a discrete-event scheduler and
Hermite polynomial interpolation has been devel-
oped and implemented. It is shown that this
new method can efficiently handle many compo-
nents driven by different algorithms and different
timescales. The utility of this simulation framework
is further demonstrated with a “composite” heat-
shock response model that combines the Gillespie-
Gibson stochastic algorithm and deterministic dif-
ferential equations. Dramatic improvements in per-
formance were obtained without significant accuracy
drawbacks. A multi-timescale demonstration of cou-
pled harmonic oscillators is also shown.

Availability An implementation of the method is available
as part of E-Cell Simulation Environment Version 3
downloadable from http://www.e-cell.org/software.
Benchmark models are included in the package, and
also available upon request.

Supplement Complete lists of reactions and parameters
of the heat-shock model, and more results are avail-
able at http://www.e-cell.org/bioinfo/takahashi03-1-
supp.pdf.

Contact shafi@e-cell.org

1 Introduction

Computational cell biology is a rapidly growing
simulation-oriented research field that has been greatly
stimulated by the array of high throughput methods
developed in recent years. In a previous publication,
we have argued that cell simulation poses many sig-
nificant computational challenges that are distinct from
those encountered in problems of other disciplines such
as molecular dynamics, or computational physics, and
even conventional biochemical simulations (Takahashi
et al., 2002). A vast array of molecular processes occur
simultaneously in the cell. The involved physical and
chemical processes include molecular diffusion, molecular
binding, enzymatic catalysis and higher order phenomena

such as cytoplasmic streaming, complex macromolecular
interactions (such as the dynamics of RNA polymerase on
the DNA molecule), and global structural changes caused
by cell division and cell differentiation.

Many different kinds of simulation algorithms have been
proposed and are currently being used for simulation of cel-
lular processes. By far the most widely accepted scheme
of describing continuous dynamical systems is representa-
tion by differential equations. Apart from standard generic
solver algorithms (Gear, 1971), specialized methods are
often used for S-System and Generalized Mass-Action
(GMA) canonical forms of power-law differential systems
in simulations of metabolic and gene regulations (Irvine
and Savageau, 1990). To complement a lack of quantita-
tive kinetic data, an attempt to marry dynamic rate-equation
based continuous models and static flux balance from sto-
ichiometry is ongoing (Yugiet al., 2002). In addition to
those continuous representations, discrete formulation is
often used. Stochastic discrete event simulation of cou-
pled chemical reactions was pioneered by Gillespie and
others (Gillespie, 1976), and improved by Gibson (Gibson
and Bruck, 2000) to work more efficiently. StochSim is a
discrete-time stochastic simulation algorithm originally de-
vised as a means of investigating the bacterial chemotaxis
signaling pathway (Morton-Firth and Bray, 1998). Sim-
ulation methods based on cellular automaton have many
applications from reactive gas physics to sociology, and
have been found to be very useful for biological simulations
(for example, see Weimar, 2002). Brownian dynamics has
proven to be an useful framework of interactions between
ligands and binding sites on receptors, enzymes, and trans-
porters (Bartolet al., 1996).

Different algorithms have different strengths, and are of-
ten suited to different spatial and temporal scales. When
constructing models that span multiple scales, one might
choose between two principal approaches: the first is the
combined algorithm approach which aims to bind strengths
of existing simulation algorithms to produce a unified simu-
lation algorithm of wide utility. The other option is an em-
bedded algorithm approach, in which existing algorithms
are implemented as pluggable modules wrapped to meet
a common interface specification of a generic framework
of time advance and inter-module communications. In this
work, we have explored the latter approach, which requires
the development of a meta-algorithm that serves as a frame-
work for integrating heterogeneous units of a composite
model. A virtue of this style of scheme integration is that
there is orthogonality between subsystems, that is to say a
degree of modularity can be assumed for each subsystem
simulated using a particular algorithm. If this requirement
is satisfied, one can expect established and well-studied al-
gorithms, and the numerous existing models that exploit
them, to be useful when combined in a “plug-in” fashion
to let them take part in composite simulations that utilize
the multiple algorithms.

1

2 Algorithm

As noted above, the novel approach we propose depends
on the design of a meta-algorithm, which we describe here
in three parts: (1) data structure, which outlines the orga-
nization of information required for model definition and
execution, (2) driver algorithm, which describes how inter-
actions between sub-modules are handled, and (3) integra-
tion algorithm, which explains the procedure by which state
variables are updated.

In this article, a vector is denoted with a small bold letter
(e.g. x). Capital letters (e.g. X) are used for sets. Class
names are capitalized (e.g.Stepper). Small and capital let-
ters are used for scalars and objects.

2.1 Data Structure

In this meta-algorithm, a Model consists of a vector of state
variables and a set of Steppers. Each Stepper consists of a
set of Processes, each of which changes values of the state
variables according to its transition function throughvari-
able references. The meta-algorithm knowsStepper depen-
denciesby tracking the variable references.

Model is a class:

M = 〈x, S〉 (1)

wherex = {x0, x1, . . . , xn} (typically∈ Rn) is a vector of
state variables, andS is a set ofSteppers.

A Stepper is a class which represents a computational
sub-unit of the model. The Stepper class is defined as:

Si = 〈Pi, τi, ∆τi, Λi, Ii〉 (2)

wherePi = {Pi,0, Pi,1, . . . Pi,m} is a set ofProcesses, τi is
the current local time,∆τi is the current time step interval,
Λi is the step method, andIi is the interruption method,
of the ith Stepper. The interruption methodIi is called by
other (interrupting) Steppers to let this (interrupted) Step-
per know that this Stepper may need recalculation because
of the changes of the variables caused by the interrupting
Stepper. See Stepper dependency below and the next Driver
Algorithm section. Ranges ofτ and ∆τ are the same:
(R+,0 ∪∞).

Definition of the Process class is given as follows:

Pi,j = 〈Fi,j , Ri,j〉 (3)

whereFi,j is a transition function, andRi,j is a set of vari-
able references such that{xρ}ρ∈R ⊆ x, of thejth Process
instance which belongs to StepperSi. Ri,j consists, in turn,
of two subsets.Ři,j ⊆ Ri,j is the accessor variable refer-
ence subset, and̂Ri,j ⊆ Ri,j is the subset of mutator vari-
able references, such thatŘ ∪ R̂ = R. Read accesses to
variables by a Process is restricted by its accessor variable
references, and it can only change values of variables in its
mutator variable reference subset. This information is used

to calculate the Stepper dependency below. For brevity we
denoteRi to mean

⋃
j Ri,j in the following sections.

F has a general form of:

F : (Ř∗, ∆τ, τ) → (R̂∗, δR̂) (4)

whereδR̂ is a set of contributions to derivatives of the mu-
tator variables ofF . (∗) means that each reference element
is de-referenced to get variable instances; thusR∗ ⊆ x.

We refer to a specialized form ofF , F : (Ř∗, ∆τ, τ) →
(δR̂) as a continuous transition functionand F :
(Ř∗, ∆τ, τ) → (R̂∗) as a discrete transition function.
For instance, differential equations generally have an even
simpler form of the continuous transition function,F :
(Ř∗, τ) → (δR̂). Difference equations can be viewed as
a type of discrete transition function. Discrete event pro-
cesses, which are constrained to discrete-valued changes in
state variables at scheduled time points, are formulated as:
F : (Ř∗, τ) → (R̂∗).

We call a Stepper made up of Processes with continuous
transition functions acontinuous Stepper, and adiscrete
Stepperif it has Processes with discrete transition func-
tions.

In addition to the Model data structure presented above,
the meta-algorithm requires some additional data structures
to execute a simulation.

The current global time,T , during a simulation is defined
as:T ≡ mini(τi + ∆τi).

An updated-time vectort = {t0, t1, . . . , tn} ∈ (R+,0 ∪
∞)n is used to store the last updated times of all the vari-
ables.

A binary relation, which we call the Stepper Dependency,
D, is defined on an ordered pair of SteppersSa andSb as:

D = {(Sa, Sb)|(Sa, Sb) ∈ S×S∧Sa 6= Sb∧Řa∩R̂b 6= ∅}
(5)

The interpretation is very simple; if a StepperSb can
change a value of at least one variable that the other Step-
perSa can read,Sa is said to be dependent onSb, that is,
(Sa, Sb) ∈ D (or equivalently,SaDSb). This relation is not
transitive (i.e. SaDSb ∧ SbDSc does not implySaDSc),
and not symmetric (i.e. SaDSb does not implySbDSa).

2.2 Driver Algorithm

Time is advanced during the simulation in an iterative fash-
ion. Each iteration of the simulation consists of the follow-
ing nine procedures.

1. Initializet and all theτs to zero.
2. Compute the Stepper DependencyD defined by

Equation 5 for all combinations of Steppers.
3. FromS, pick a StepperSi which has the minimum

scheduled timeτi + ∆τi over the set.
4. Update the local time ofSi: τi ← τi + ∆τi.
5. integrate: Update values of variablesR∗i according

to the integration algorithm given below.

2

6. step: Allow the StepperSi to execute a “step” by
calling its implemented “step method”Λi. Λi may
call transition functionsFi,j of ProcessesPi,j in the
setPi according to its implemented algorithm.Λi

may also update the step size∆τi, the timescale pa-
rameterθi, and any other implementation-specific
parameters of the StepperSi.

7. dispatchInterruptions: In this procedure the Stepper
Si notifies the change of the variables to other Step-
pers.Si calls interruption methodsIj of all Steppers
Sj that depend onSi, i.e., {Sj |Sj ∈ S ∧ (Sj , Si) ∈
D}. The interruption methodIj may change∆τj , θj ,
and any other implementation-specific parameters of
the StepperSj .

8. log: For post-simulation data processing, record val-
ues of variables related to this Stepper,R∗i , if neces-
sary.

9. End if the termination condition given by the user
(such as the value ofT and the number of iterations)
is met. Otherwise go to 3.

The time is advanced and the values of the state variables
are updated in three actions (procedures 4, 5, and 6). Pro-
cedure 4 updates the local timeτi of the StepperSi and
the global timeT . In procedure 5, the variables are up-
dated by continuous Steppers (See Integration Algorithm
section). In procedure 6,Λi of a discrete Stepper may call
its transition functions to change the values of variablesR∗i .
A continuous Stepper usually does not change the values of
variables in this procedure, but usesΛi to recalculate in-
put parameters to its interpolants fromδR̂i (See Integration
Algorithm and Implementation sections).∆τ is also recal-
culated in this procedure, and is used in procedure 4 of the
next step of the Stepper to advance the time. In procedures
6 and 7, Steppers set an ancillary parameterθ (∈ R+,0∪∞
) which indicates the time scale of change ofR̂∗i andδR̂i.
Normally θ > 0 for continuous Steppers. IfSi is a dis-
crete Stepper, usuallyθ = 0. In procedure 7, Steppers
which depend onSi may use this value as a clue to op-
timize computation by ignoring some of the interruptions
from this Stepper. See the Implementation section for ex-
ample usage and calculation ofθ. If more than one Stepper
has the same scheduled time in procedure 3, the one with
the highest ’priority’ value (defined as part of the model) is
chosen.

2.3 Integration Algorithm

In the integratephase of the meta-algorithm (procedure 5
above), interpolation is used to recompute the set of vari-
ablesR∗i .

In the simplest case, where all the continuous Steppers in
the model implement first-order numerical integration al-
gorithms, the procedure has a form of Euler’s method with

a second order error term. For eachj ∈ Ri,

xj(τi) = xj(tj)+∆tj
∑

k∈S̃

x′j,k +O(∆tj
2), ∆tj = τi−tj

(6)
x′j,k =

∑

l∈Pk

δρk,l, ρk,l ∈ Rk,l (7)

whereS̃ ⊆ S is the set of continuous Steppers, andtj is the
last updated time ofxj . Hereδρk,l is a contribution to the
velocity of change ofxj given by thelth Process of thekth
Stepper, andtj is the last updated time ofxj .

Although mathematically concise, this scheme spoils the
benefits of higher order algorithms. No matter how high the
order of the internal computational procedure being used,
the outcome will be integrated as a linear sum of the most
recently computed first order derivatives, resulting in a first
order global precision. First-order algorithms, however,
only occasionally satisfy practical requirements, in terms of
accuracy, efficiency and stability, for numerical simulations
of continuous systems. Therefore this procedure should be
extended to have a higher order error term.

Replacing the first order derivative term of Equation 6 by
a difference of higher order interpolants we get:

xj(τi) = xj(tj) +
∑

k∈S̃

Φk,j(τi, ∆tj) + O(∆tj
s) (8)

whereΦk,j(τi,∆tj) is an interpolant difference given by
thekth Stepper forxj . The order of the global error term is
s = mink∈S̃ dk. Heredk is the order of thekth Stepper.

The interpolant differenceΦk,j(τi, ∆tj) is defined as a
difference between values of the interpolantιk,j at time
pointsτi andτi −∆tj .

Φk,j(τi, ∆tj) = ιk,j(τi)− ιk,j(τi −∆tj) (9)

The relationship betweenτi andtj is depicted in Figure
1.

To minimize the total expected error over the whole
model, the input parameters to each interpolant should be
recomputed upon receiving an interruption (procedure 7
above). This functionality is not guaranteed by the meta-
algorithm, and is a requirement in the implementation of
specific algorithm modules, some examples of which are
described below.

3 Implementation

The meta-algorithm has been implemented in the ISO C++
programming language with extensive use of template-
based generic programming techniques (Alexandrescu,
2001) and object-orientation. To optimize the operation of
finding the Stepper with the minimum scheduled time in
procedure 3 of the driver algorithm, a discrete event sched-
uler was implemented as a heap-tree-based dynamic prior-
ity queue for which the rescheduling cost isO(log |S|). The

3

implementation has an XML parser for model description
files, C++ and Python language APIs for user scripting and
frontend module development. Simulation algorithms can
be developed in the C++ language as dynamically loadable
plug-in modules by inheriting base classes provided by the
system.

Three sub-classes of Stepper,DiscreteEventStepper, Dis-
creteTimeStepperandDifferentialStepper, are provided ac-
cording to Zeigler’s classification of simulation algorithms
(Zeigleret al., 2000). Each concrete implementation of an
algorithm is a subclass of one of these base classes.

At least the step methodΛ, the interruption methodI,
and a function to determine the timescale parameterθ must
be defined in each implementation of a Stepper.

3.1 Differential equation modules

As subclasses of the DifferentialStepper, two general-
purpose ordinary differential equation (ODE) solvers have
been implemented. Many variants of the Runge-Kutta algo-
rithm exist, and the general form of the algorithm is given
as follows:

kj = f (xn + cjh, yn + h
∑s

i=1 aj,iki) , j = 1 . . . s

yn+1 = yn + h
∑s

j=1 bjkj (10)

whereh is the step size,s is the number of right hand side
(RHS) evaluations required for a single step. Specification
of the matrix of coefficientsa, b, andc determine each spe-
cific variation of the algorithm.

Two instances of embedded explicit Runge-Kutta algo-
rithms with dense output capabilities have been imple-
mented: second-order Fehlberg with a third-order error es-
timation (Fehlberg 2(3)) (Fehlberg, 1969), and fourth-order
Dormand-Prince with a fifth-order error term (Dormand-
Prince 5(4)7M) (Dormand and Prince, 1980).

For some integration algorithms including these two, it is
possible to derive interpolants by using Hermite polynomial
interpolation, the general form of which is:

g(x) =
∑

i

∑
j αi,j(x)f (j)

i ,
[

dj

dxj αi,j(x)
]

x=xk

= δi,k

(11)
wherexk(k = 1, 2, · · · , n) is the time point where input
is given,f (j)

i is the input function defined atxi as thejth

order derivative, andδi,k is the Kronecker delta. Iff (j)
i

defines data points atm different combinations ofi andj,
then it can make an interpolant of orderm− 1.

A C0 interpolant of the second-order Fehlberg algorithm
can easily be derived because we have three data points,
the initial value, (xj(τk)), the value atτi + ∆τi, (xj(τk) +∑3

i=1 biki), and the first-order derivative value at the initial

point, (k1).

ιk,j(t) = (1− σ2) xj(τk) + (−σ2 + σ)∆τkk1

+ σ2
(
xj(τk) + ∆τk

∑3
i=1 biki

)
+ O(∆tj

3)

(12)

σ = (t− τk)/h, 0 < σ ≤ 1 (13)

whereτk and∆τk are the current time and the current step
size of this Stepper, respectively. Hereα0,0 = (1 − σ2),
α0,1 = (−σ2 +σ), andα1,1 = σ2. ∆τk appears in the sec-
ond and the third terms of the RHS because of the change
of variable fromt to σ.

Shampine (1986) gives aC1 interpolant of the Dormand-
Prince 5(4)7M with additional coefficientsb∗i :

ιk,j(t) = xj(τk) + σhk1 + 4σ2h(σ − 1)(k1 − v 1
2
)

+ 2σ2h(σ − 1
2)(v1 − k1)

+ 2σ2h(σ − 1
2)(σ − 1)(k7 − k1 + 4v 1

2
− 4v1)

+ O(∆tj
5),

v 1
2

=
∑7

i=1 b∗i ki, v1 =
∑7

i=1 biki (14)

The number of RHS evaluations required in each step of
the simulation is three for Fehlberg 2(3).

Interestingly, k[n]
7 = k

[n+1]
1 for the Dormand-Prince

5(4)7M algorithm if there is no interruption in a time in-
terval(τn, τn+1]. Thus the number of RHS evaluations re-
quired by the algorithm is seven for starting up, and six or
seven during the simulation.

The step methodΛ for these ODE modules are imple-
mented with a standard adaptive step sizing mechanism
(Presset al., 2002). In addition, time step sizes are con-
strained by the following condition to ensure that the Step-
per does not change variable values too much at once in a
single step:

∀j ∈ R̂i : xjεrel + εabs ≥
∑

l∈Pi

δρi,l ·∆τi (15)

whereεabs andεrel (usually. 0.1) are absolute and rela-
tive constraint parameters of changes of the variables in a
step, andρi,l is a variable reference of thelth Process in
the ith Stepper pointing toxj . The constraint parameters
εabs andεrel should be provided according to external con-
ditions given to this Stepper, such as the total number of
continuous Steppers and their implemented algorithms.

In this implementationθi has the same value as∆τi.
The interruption methodIi for theith ODE solver is de-

fined as follows:

1. If the timescale of the interrupter is smaller than the
step size of this Stepper,θk < ∆τi, then useθk as
the initial guess of the next step size. Otherwise, just
return ignoring this interruption.

2. If the next step of the interrupter is before this Step-
per, (τi + ∆τi > τk + ∆τk), set∆τi to T − τi.

4

Procedure 2 makes sure that the interrupted StepperSi

steps at least once between the current and the next steps of
the interrupting StepperSk. This guarantees that the con-
straint in Equation 15 takes effect on the interrupted Step-
pers. Procedure 1 is an optimization. If the interrupted
steps more frequently than the interrupter’s timescale pa-
rameterθk, the constraint is assumed to be satisfied with-
out the interruption. By usingθk as the next step size of the
interrupted Stepper, this optimization more likely happens
again in the next step.

3.2 Gillespie-Gibson module

A standard Gillespie-Gibson algorithm, or the Next Re-
action Method, has been implemented as a subclass of
the DiscreteEventStepper in a fully object-oriented fashion.
The probability density function for the next reaction to oc-
cur at timeτ , P (τ), and the probability that this reaction is
of typeµ, Pr(µ), are given by the following two equations.

P (τ) =
(∑

j aj

)
exp

(
−τ

∑
j aj

)
(16)

Pr(µ) = aµ/
∑

j aj (17)

whereaj is the propensity function of thejth reaction. The
propensity functionaj is defined ask

∏
X (if the reaction

is in either form ofX1 → X2 or X1 + X2 → X3), or
askX1(X1 − 1)/2 (if the reaction is2X1 → X2), where
k is the rate constant andXi is the number of copies the
molecular species involved in the reaction. In this imple-
mentation, we only consider uni- and bi-molecular reac-
tions, and ifXi is not an integer, a floor is taken to calculate
the propensity.

The interruption methodI has been implemented to en-
able synchronization with other modules. The procedure
is: (1) Recalculate the propensities of the reactions, (2) Re-
determine the time of the next reactionτi + ∆τi and the
next reactionµ according to the main algorithm, and (3)
Reschedule the Stepper to timeτi + ∆τi on the scheduler.

The timescaleθi is determined as:

θi = ξ ·∆τi min
ρ∈Ri,µ

ρ∗

|νρ| (18)

whereξ is a tolerance parameter,i is an index of the Step-
per, andνρ is the stoichiometric coefficient for the variable
referenceρ defined as a part of the model.ξ takes a small
number such as 0.1, or 0.ξ 6= 0 directs it to pretend to
be a continuous component. This may make the simula-
tion more efficient if this Stepper takes smaller step sizes
than other parts of the model. For instance,ξ = 0.1 letsθ
be the expected time for the reactant of the current Process
with the smallest population to change its value by 10 %. If
precision precedes efficiency, setξ = 0.

The Mersenne-Twister algorithm (Matsumoto and
Nishimura, 1998) has been employed as a pseudo-random
number generator.

4 Results

Two relatively simple models have been constructed to ex-
amine the performance of the meta-algorithm. The first is a
model of the heat-shock response, and has three variations,
deterministic (ODE), stochastic (Gillespie), and composite
(ODE/Gillespie). This example is to show multi-algorithm
and multi-timescale capabilities of the algorithm. The sec-
ond example is a simple cascade of coupled harmonic os-
cillators with gradually changing timescales that span six
orders of magnitude.

All the timings and results given in this work have been
taken on a PC running RedHat Linux 9 operating system
with a dual Hyper-Threading-enabled Intel Xeon 2.8GHz
CPU and 1GB of RAM. This implementation is a single-
thread application.

4.1 A multi-algorithm heat-shock model

When cells are exposed to high temperature, the synthesis
of a small number of proteins known as heat-shock proteins
becomes selective and rapid (Gross, 1999). This process
is called the heat-shock response.σ32, a variation of the
σ subunit of RNA polymerase, has been implicated as the
global regulator for this system (Grossman, 1987). DnaJ is
a molecular chaperone that plays an important role in regu-
lating the activity and stability ofσ32 (Gameret. al., 1996).
Many molecular species involved in this process are present
in small numbers, most of which relate to gene expression
processes, and require stochastic simulation. In contrast,
protein folding involves large quantities of molecules, mak-
ing stochastic simulation computationally challenging.

To evaluate the performance of a composite simulation
scheme, we set up a pure stochastic model, a pure ODE
model and a stochastic/ODE composite model, based on
Srivastava’s stochastic petri net model of theE.coli heat-
shock (Srivastavaet al., 2001). Protein folding/unfolding
processes have been added to the model, and modeled as
differential equations in the ODE and composite models,
and using the Gillespie algorithm in the stochastic model
(Figure 2). In the composite model, the stochastic and ODE
parts are coupled bidirectionally. Complete lists of reac-
tions, parameters and initial values are available inSupple-
ment. All parameter settings and initial values of the three
variations of the model are identical.

We ran each model ten times for 100 seconds and traced
the quantities ofσ32 and DnaJ to benchmark the perfor-
mance. These two species were selected becauseσ32 is
biologically important, as it controls the expression level of
heat shock proteins, and DnaJ is on the boundary of the dif-
ferent algorithms in the composite model. The composite
model ran about 2.6 times as fast as the ODE model, and
351 times faster than the stochastic model (Table 1). The
difference in mean steady-state levels in these three vari-
ations were within 2.7% forσ32, and 0.0008% for DnaJ.

5

The standard deviation ofσ32 in the composite run was in-
distinguishable from that of the stochastic run. In contrast,
the trajectory of DnaJ was devoid of stochastic fluctuations
in the composite model (Table 1, Figure 4). The total num-
ber of protein molecules in this example model is of order
106 – 107. Histograms to compareσ32 results in composite
and stochastic runs are available inSupplement.

4.2 A simple model of multi-timescale oscil-
lators

A cascade of twenty harmonic oscillator components
X0, X1, · · · , X19 have been constructed. Each component
Xn is coupled with the next oneXn+1 with a positive feed-
forward. The rate constant ofXn is doubled forXn+1 (Fig-
ure 3), resulting in a total timescale difference in the model
of aboutlog10(220) ' 6.0 orders of magnitude. Five sets
of the cascade are included in a model.

Benchmarking was conducted on the model with one,
two, four, ten, and twenty Steppers (Table 2). As an ex-
ample, in the two Steppers variant, the components were
divided into two groups,X0, · · · , X9 andX10, · · · , X19.
Relative and absolute differences between results from
these variations were smaller than the error tolerance pa-
rameter given to the Steppers (10−6). The simulation speed
improved as the number of Steppers was increased. The
twenty Steppers variant achieved almost an order of mag-
nitude better performance than the original.

5 Discussion

In the limit of large numbers of reactant molecules, stochas-
tic and deterministic simulations are equivalent (Gillespie,
1977). In contrast, if the system has low copy numbers
of species, the deterministic law of mass action breaks
down because the steady-state fluctuations in the number
of molecules (which is proportional to the square root of
the number of molecules) becomes a significant factor in
the behavior of the system (Singer, 1953). ODE models
isolate the biochemical system into a group of determinis-
tic and continuous reactions, and tacitly ignore fluctuations
in the pathway (Raoet al., 2002). With identical parameter
settings, the stochastic and deterministic models can pro-
duce different results, and stochastic models are generally
believed to be more accurate (Marionet. al., 1998; Srivas-
tavaet al., 2002).

Despite its advantages, however, Gillespie’s scheme of
exact stochastic simulation has limited utility due to its
computational cost which is proportional to the number of
molecules. The composite simulation of the heat-shock
demonstration model shows that, if carefully chosen, ODEs
can replace some parts of the stochastic model, result-
ing in a dramatic improvement in performance without
jeopardizing the benefits of the original purely stochastic
model. A logical extension to this “static” combination

of the deterministic and stochastic schemes would be “dy-
namic” switching between these different simulation meth-
ods. This will be further explored in future work.

The composite heat-shock model runs faster than both the
ODE and the Gillespie models. The following crude ap-
proximation of computational costs of these models with-
stand some discussion.

OGillespie ∝ [
∑

a] log N, OODE ∝ γ
[

∂f
∂x

]
N,

OComposite ∝ [
∑

a]m log Nm + γ
[

∂f
∂x

]
f

Nf

where [∂f
∂x] is a measure of the degree of stiffness,N is

the number of reactions,[
∑

a] denote the total propen-
sity, andγ is a constant parameter to relate[∂f

∂x] and[
∑

a].
Subscriptsm andf indicate the main part and the folding
part of the model, respectively. ObviouslyN = Nm +
Nf . Computational cost of explicit ODE solvers such as
Dormand-Prince 5(4)7M is largely determined by the de-
gree of stiffness, which is dominated by∂f

∂x (wherex is
a dependent variable, andf is the derivative function for
x). The large (137-fold) performance difference between
the ODE and Gillespie impliesγ[∂f

∂x]N ¿ [
∑

a] log N .
In fact, ∆τ of the ODE Stepper was about10−3, while
the step size of the Gillespie-Gibson Stepper was typi-
cally in the range of10−6 – 10−9. The composite model
is faster than the ODE model, if[∂f

∂x]fNf < [∂f
∂x]N and

[
∑

a]m log Nm ¿ γ[∂f
∂x]N . Because the degree of stiff-

ness is dominated by the fastest component of the system,
it can be assumed that[∂f

∂x]f ' [∂f
∂x]. Thus the first propo-

sition can be verified byNf < N . The latter proposi-
tion is consistent with the∆τ observed in Gillespie sim-
ulation of the main model in isolation (10−1 – 10−3). This
speed difference, however, is less important than that of
the Gillespie and the composite models because the depen-
dency of the ODE solvers to stiffness can partially be over-
come by use of an implicit or a semi-implicit solver (Gear,
1971). Now the difference between the composite model
and Gillespie model is explained because[

∑
a]m ¿ [

∑
a]

andγ[∂f
∂x]fNf < γ[∂f

∂x]N ¿ [
∑

a] log N .
In the composite model,σ32 behaves identically with the

pure stochastic model, and the trajectory of DnaJ almost
matches that of the deterministic model.σ32 is one step
away, and DnaJ is on, the boundary between the determin-
istic and the stochastic parts of the model. In the compos-
ite simulation, stochastic fluctuation of DnaJ is absorbed
by the fast rates of the deterministic reactions involved in
controlling its stady-state value. The primary path from
the boundary (DnaJ) toσ32 is a slow reaction (dissocia-
tion of σ32 / DnaJ complex,k = 4.4× 10−4) which filters
higher frequency fluctuations. Thusσ32 is insensitive to
such rapid fluctuations even in the pure stochastic model,
and no difference is observed between the stochastic and
composite runs in the first and second moments of the time
course. (An analysis of higher moments showed a slight
difference in skewness, and no difference in kurtosis. See

6

Supplement.) However, as the behavior of DnaJ exempli-
fies, the composite simulation must be used with caution if
the stochastic effect on species near the boundary is of in-
terest, or is expected to influence the overall behavior of the
model.

The Gillespie-Gibson Stepper recalculates putative times
of all the reactions upon interruptions by other Steppers.
The correctness of these recalculated times in a composite
simulation is guaranteed because the interruption procedure
itself does not affect the probability densityP (τ). To verify
this, consider an interruption atτ ′, (τ ′ < τ), the probability
density of the next reaction time,̃P (τ), is then calculated
by the following equation.

P̃ (τ) =
(
1− ∫ τ ′

0
P (t)dt

)
·P (τ − τ ′) (19)

= exp
(
−τ ′

∑
j aj

)
·P (τ − τ ′)

=
(∑

j aj

)
exp

(
−τ

∑
j aj

)

This is equal to the original function in Equation 16.
The coupled oscillator model demonstrates the efficiency

with which multi-timescale phenomenon can be modeled in
our novel framework. In this toy model, slower components
were unidirectionally connected to faster components. This
type of coupling is commonly observed in the cell. For
instance, expression of enzymes from genes, which is rel-
atively slow, controls metabolic reactions. Conversely, if
there is a feedback from the faster components to the slower
ones, which is also common in the cell, frequent synchro-
nizations are required. In this case the performance of this
implementation is expected to be the same as, or worse
than, conventional synchronous single-algorithm simula-
tors because of the interruption overhead. However, if the
slow component is assumed to be insensitive to perturba-
tions on the faster component’s timescale, synchronization
costs could be reduced. This improvement will also be con-
sidered in future work to improve the meta-algorithm.

Time-driven simulation algorithms can be classified into
three categories: differential equation solvers, discrete time
systems, and discrete event systems. Those formalisms can
be combined by or embedded in a “discrete event world
view” (Zeigler et al., 2000). Although this work is not a
direct derivation of this rigid discrete event theory of mod-
eling and simulation, some fundamental concepts such as
the classification of simulation algorithms and the use of an
event scheduler have been borrowed from that framework.

6 Conclusion

Due to the non-linear nature of the subsystems and the inti-
mate coupling between them, simulation is crucial for cell
biology research. In the past, however, it has been the norm
to adopt different simulation algorithms for different sub-
systems of the cell. This had made it difficult to combine

the sub-cellular models and in many cases limited the appli-
cations of simulation to single-scale, sub-cellular problems.

In this work, we have provided a modular meta-algorithm
with a discrete event scheduler that can incorporate any
type of time-driven simulation algorithm. It was shown that
this meta-algorithm can efficiently drive simulation mod-
els with different simulation algorithms with little intrusive
modification to the algorithms themselves. Only a few ad-
ditional methods to handle communications between com-
putational modules are required.

The best algorithm for a specific model is determined by
the nature of the target system. Our meta-algorithm pro-
vides a solution for situations in which it is necessary to
simulate processes concurrently across multiple scales of
time, space or concentration (Raoet al., 2002).

7 Acknowledgments

The authors would like to thank Tomoya Kitayama and Ga-
bor Bereczki for help in implementation, and Dr. Toshikazu
Ebisuzaki for useful advice. Dr. Thomas Shimizu and
Chris Pickett kindly helped us by critical readings and edit-
ing. This work was supported in part by the Japan Science
and Technology Corporation, the Ministry of Agriculture,
Forestry and Fisheries of Japan (Rice Genome Project), and
New Energy and Industrial Technology Development Orga-
nization (NEDO).

References

Alexandrescu,A. (2001)Modern C++ Design: Generic Program-
ming and Design Patterns Applied.Addison Wesley Profes-
sional, Boston.

Bartol,T.M.Jr., Stiles,J.R., Salpeter,M.M., Salpeter,E.E. and Se-
jnowski,T.J. (1996) MCELL: generalized Monte Carlo com-
puter simulation of synaptic transmission and chemical signal-
ing. Soc. Neurosci. Abs., 22, 1742.

Dormand,J.R. and Prince,P.J. (1980) A family of embedded
Runge-Kutta formulae.J. Comp. Appl. Math., 6, 19-26.

Fehlberg,E. (1969) Low-order classical Runge-Kutta formulas
with stepsize control and their application to some heat transfer
problems. NASA Technical Report, NASA-TR-R-315.

Gear,C.W. (1971)Numerical Initial Value Problems in Ordinary
Differential Equations. Prentice-Hall, New Jersey.

Gibson,M.A. and Bruck,J. (2000) Efficient exact stochastic sim-
ulation of chemical systems with many species and many
channnels.J. Phys. Chem., 104, 1876-1889.

Gillespie,D.T. (1976) A general method for numerically simulat-
ing the stochastic time evolution of coupled chemical reactions.
J. Comput. Phys., 22, 403-434.

Gillespie,D.T. (1977) Concernning the validity of the stochastic
approach of chemical kinetics.J. Stat. Phys., 16, 311-319

Gamer,J., Multhaup,G., Tomoyasu,T., McCarty,J.S., Rudiger,S.,
Schonfeld,H.J., Schirra,C., Bujard,H., Bukau,B. (1996) A cy-
cle of binding and release of the DnaK, DnaJ and GrpE chaper-

7

ones regulates activity of the Escherichia coli heat shock tran-
scription factorσ32. EMBO J.15, 607-617

Gross,C.A. Function and regulation of the heat shock proteins. In
Neidhardt,F.C. and Ingraham,J.L. (eds),Escherichia coli and
Salmonella: Cellular and Molecular Biology. American Soci-
ety for Microbiology, Washington D.C., pp.1382-1399.

Grossman,A.D.,et al. (1987)σ32 synthesis can regulate the syn-
thesis of heat shock proteins inEscherichia coli. Genes& Dev.,
1, 179-184.

Irvine,D.H. and Savageau,M.A. (1990) Efficient solution of non-
linear ordinary differential equations expressed in S-System
canonical form.Siam. J. Numer. Anal., 27, 704-735.

Marion, G., Renshaw, E., Gibson, G. (1998) Stochastic effects in
a model of nematode infection in ruminants.IMA Journal of
Mathematics Applied in Medicine and Biology, 15, 2, 97-116.

Matsumoto,M. and Nishimura,T. (1998) Mersenne Twister:
A 623-dimensionally equidistributed uniform pseudorandom
number generator.ACM Trans. on Modeling and Computer
Simulation, 8, 3-30.

Morton-Firth,C.J. and Bray, D. (1998) Predicting temporal fluc-
tuations in an intracellular signalling pathway.J. Theor. Biol.,
192, 117-128.

Press,W.H., Teukolsky,S.A., Vetterling,W.T. and Flannery,B.P.
(eds) (2002)Numerical Recipes in C++: The Art of Scientific
Computing.Cambridge University Press, New York.

Rao,C.V., Wolf,D.M. and Arkin,A.P. (2002) Control, exploitation
and tolerance of intracellular noise.Nature, 420, 231-237.

Shampine,L.F. (1986) Some Practical Runge-Kutta Formulas.
Math. Comput., 46, 135-150.

Singer, K. (1953) Application of the theory of stochastic processes
to the study of irreproducible chemical reactions and nucleation
process.J. R. Stat. Soc. B, 15, 92-106.

Srivastava,R., Peterson,M.S. and Bentley,W.E. (2001) Stochas-
tic kinetic analysis of theEscherichia colistress circuit us-
ing sigma(32)-targeted antisense.Biotechnol. Bioeng., 75, 120-
129.

Srivastava, R., You, L., and Yin, J. (2002) Stochastic vs. Deter-
ministic Modeling of Intracellular Viral Kinetics.J. Theor. Biol.
218, 309-321.

Takahashi,K., Yugi,K., Hashimoto,K., Yamada,Y., Pickett,C. and
Tomita,M. (2002) Computational challenges in cell simulation.
IEEE Intell. Syst., 17, 64-71.

Weimar,J.R. (2002) Cellular automata approaches to enzy-
matic reaction networks. In Bandini,S., Chopard,B. and
Tomassini,M.(eds),Cellular Automata (Fifth International
Conference on Cellular Automata for Research and Industry
ACRI).Springer-Verlag, Berlin, pp.294-303.

Yugi,K., Nakayama,Y. and Tomita,M. (2002) A hybrid
static/dynamic simulation algorithm: Towards large-scale
pathway simulation.Proceedings of the Third International
Conference on Systems Biology.235.

Zeigler,B.P., Praehofer,H. and Kim,T.G. (2000)Theory of Model-
ing and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems. Academic Press, San Diego.

8

Timing (sec.) Speed σ32 Std. Dev. σ32 Level DnaJ Std. Dev. DnaJ Level
Stochastic 507.7±0.76 1 3.74±0.072 15.18±0.391 5.273±0.206 464.4±0.498
Composite 1.445±3.5e-4 351 3.64±0.112 14.83±0.348 3.156e-2±0.282e-2 464.4±0.007

Deterministic 3.703 137 0 15.01 0 464.4

Table 1: Benchmark results of the heat-shock model
The three variations, stochastic, composite, and deterministic, of the heat-shock model were run for 100 seconds. Each

timing is an average of ten runs. Only the random number seed was changed from run to run in stochastic and composite
simulations.ξ = 0. The mean levels and the standard deviations ofσ32 were calculated over the simulation results, and
trapezoid method was used for the mean calculation. Dormand-Prince 5(4)7M algorithm has been used for ODE parts in
the composite and deterministic runs. The results do not include times for program invocation and parsing of the XML

model file. See also Figure 4.

9

|S| Predicted Cost Timing Predicted Speed Speed
1 219·20 [100%] 68m43s 1.00 1.00
2 29·10 + 219·10 [∼ 50%] 35m13s 2.00 1.95
4 5(24 + 29 + 214 + 219) [∼ 26%] 18m16s 3.88 3.76
10 4· 410−1

4−1 [∼ 13%] 9m33s 7.50 7.20

20 220−1
2−1 [∼ 10%] 7m10s 10.00 9.5

Table 2: Benchmark results of the cascade oscillators model
The cascade oscillators model was run for 0.5 seconds. The components were equally divided into one, two, four, ten, and
twenty Steppers. An average of three runs is shown for each configuration. Dormand-Prince 5(4)7M algorithm has been
used for all the components. The timings include a program startup and an XML parsing. The predicted simulation costs
are calculated by assuming that it is directly proportional to values of time constants.

10

Figure 1: Relation betweenτ andt
This example has only two continuous Steppers,S1 and
S2. Both share a variablexj . Time pointsτ1 andτ2 are
where the last steps of these Steppers occured, andτ ′1

(= τ1 + ∆τ1 = T) is the current time.S1 steps atτ1 and
τ ′1. S2 steps atτ2. xj is updated atτ1, τ ′1, andτ2. If the last
Stepper stepped beforeτ ′1 is S2, thenτ2 = tj = τ ′1 −∆tj .

Figure 2: The the heat-shock demonstration model
Model scheme for the heat-shock model. S32 meansσ32;
E S32 means the RNAP core enzyme withσ32; Protein
means folded protein and UnProtein means unfolded pro-
tein. Dashed lines in the upper-right corner represent re-
action modeled using ODE in the composite model, and
Gillespie in the stochastic model. Rate constants forσ32

transcription and translation are 1.4×10−3 and 7×10−2,
respectively, which are the only different parameters from
the Srivastava’s model.k unfold = k binding = 0.2, and
k refold = 9.73×106.

11

Figure 3: The cascade oscillators demonstration model
The model has a basic unit of two variables coupled
by the following equations: d[Xi+]

dt = −k2i[Xi−] +
k2i−1[X(i−1)−], d[Xi−]

dt = k2i[Xi+] wherek is a time
scaling factor. A cascade has twenty instances of the unit.
The model has five sets of the cascade. Four sample solu-
tions of the cascade oscillators model are shown below the
first (slowest), second, nineth, and twentieth (fastest) com-
ponents.

12

(a)
 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

T
he

 n
um

be
r

of
 m

ol
ec

ul
es

 o
f S

32

Time [second]

Deterministic
Composite
Stochastic

(b)
 300

 350

 400

 450

 500

 550

 600

 0 5 10 15 20

T
he

 n
um

be
r

of
 m

ol
ec

ul
es

 o
f D

na
J

Time [second]

Deterministic
Composite
Stochastic

Figure 4: Simulation results of the the heat-shock model
Comparisons of (a)σ32 and (b) DnaJ time courses of the first 20 seconds of the simulation for the stochastic model, the
composite model, and the deterministic model. The composite and the ODE trajectories of DnaJ overlap. It can be seen
that means of the ODE (fine curve), the stochastic (dashed curve), and the composite (thick curve) models agree well both
in σ32 and DnaJ cases. The standard deviations ofσ32 in the stochastic and composite models are equivalent. In contrast,
the stochastic fluctuations cannot be seen for the DnaJ trajectory of the composite run, making it equivalent to the ODE
model (see Table 1 for numerical values).

13

